If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-96=-80
We move all terms to the left:
m^2-96-(-80)=0
We add all the numbers together, and all the variables
m^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 8x^2+36x+28=0 | | 6x2-24x+24=0 | | 4(3r+1)= | | 4(x-2)–2x=x–6 | | 3w^2=-5w | | 12=6x-84 | | 60x+20(60)=50x+50•60 | | (1.055^x)=4 | | 100d^2-76=68 | | 5n-4=-15 | | 1.055^x=4 | | 26-5p=18-4p | | ∠A=5x−15 | | ((63x)+65(100-x))/100=63.55 | | x+4/x=4 | | 9b+3=10b | | w^2-7-8=0 | | 9p-3+p=7 | | -10+4c=2c | | (63x)+65(100-x)=63.55 | | 121z^2=25 | | 121z^2=2 | | 9p-3=p=7 | | 4j^2-144=0 | | 5u+8=-2 | | 3(2x=12)=-2(x-4)+x | | x+5x=72000 | | -10+7a=4 | | 5-t/2-3t/5=2+t+1/3 | | C=2•3.15r | | 10x+1=3(3x+6) | | (b)/(6)=8 |